AWS Documentation MCP Server

Provides tools to access AWS documentation, search for content, and get recommendations.

Skills

Explore the skills and capabilities of this skillset.

recommend

Get content recommendations for an AWS documentation page. ## Usage This tool provides recommendations for related AWS documentation pages based on a given URL. Use it to discover additional relevant content that might not appear in search results. ## Recommendation Types The recommendations include four categories: 1. **Highly Rated**: Popular pages within the same AWS service 2. **New**: Recently added pages within the same AWS service - useful for finding newly released features 3. **Similar**: Pages covering similar topics to the current page 4. **Journey**: Pages commonly viewed next by other users ## When to Use - After reading a documentation page to find related content - When exploring a new AWS service to discover important pages - To find alternative explanations of complex concepts - To discover the most popular pages for a service - To find newly released information by using a service's welcome page URL and checking the **New** recommendations ## Finding New Features To find newly released information about a service: 1. Find any page belong to that service, typically you can try the welcome page 2. Call this tool with that URL 3. Look specifically at the **New** recommendation type in the results ## Result Interpretation Each recommendation includes: - url: The documentation page URL - title: The page title - context: A brief description (if available) Args: ctx: MCP context for logging and error handling url: URL of the AWS documentation page to get recommendations for Returns: List of recommended pages with URLs, titles, and context

read_documentation

Fetch and convert an AWS documentation page to markdown format. ## Usage This tool retrieves the content of an AWS documentation page and converts it to markdown format. For long documents, you can make multiple calls with different start_index values to retrieve the entire content in chunks. ## URL Requirements - Must be from the docs.aws.amazon.com domain - Must end with .html ## Example URLs - https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html - https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html ## Output Format The output is formatted as markdown text with: - Preserved headings and structure - Code blocks for examples - Lists and tables converted to markdown format ## Handling Long Documents If the response indicates the document was truncated, you have several options: 1. **Continue Reading**: Make another call with start_index set to the end of the previous response 2. **Stop Early**: For very long documents (>30,000 characters), if you've already found the specific information needed, you can stop reading Args: ctx: MCP context for logging and error handling url: URL of the AWS documentation page to read max_length: Maximum number of characters to return start_index: On return output starting at this character index Returns: Markdown content of the AWS documentation

search_documentation

Search AWS documentation using the official AWS Documentation Search API. ## Usage This tool searches across all AWS documentation for pages matching your search phrase. Use it to find relevant documentation when you don't have a specific URL. ## Search Tips - Use specific technical terms rather than general phrases - Include service names to narrow results (e.g., "S3 bucket versioning" instead of just "versioning") - Use quotes for exact phrase matching (e.g., "AWS Lambda function URLs") - Include abbreviations and alternative terms to improve results ## Result Interpretation Each result includes: - rank_order: The relevance ranking (lower is more relevant) - url: The documentation page URL - title: The page title - context: A brief excerpt or summary (if available) Args: ctx: MCP context for logging and error handling search_phrase: Search phrase to use limit: Maximum number of results to return Returns: List of search results with URLs, titles, and context snippets

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

AWS Documentation MCP Server

AI 寫作助手
告訴我有關 AI 產品或品牌的信息 - 我將撰寫吸引人的營銷文案、文章和社交媒體帖子,根據您的品牌聲音和產品細節量身定制,並附上相關鏈接和插圖。
X/Twitter 助手
一個 AI 驅動的 Twitter 助手,幫助內容創作者將 AI 產品體驗轉化為病毒式推文 - 具有自動潤色、智能研究和一鍵發布功能。
Google 分析師
逐步指南,教您如何將 Google Analytics 4 (GA4) 屬性連接到 Google 分析師代理。涵蓋創建 Google Cloud 服務帳戶、啟用 Analytics Data API、授予 GA4 查看者訪問權限,以及配置代理以支持會話、用戶、跳出率、轉換等指標。非常適合快速在 Bika.ai 中設置 GA4 數據報告。
品牌设计师
一款專為初創數字產品設計的品牌營銷 AI 助手,幫助您快速生成適合 Product Hunt、AppSumo 等平台的在線推廣材料,涵蓋視覺創意、推廣標語、品牌語調和賣點傳達
社區活動分析員
分析社區活動截圖,報告參與趨勢和討論亮點。上傳社區互動的截圖,該 Agent 會生成一份清晰的markdown報告,總結參與水平、關鍵討論主題和顯著亮點 — 非常適合社區經理、行銷人員和產品團隊。
Github issues 助手
Github Issues 助手是一個 AI 智能體,用於簡化 GitHub issues的管理。它可以直接在存儲庫中簡化創建、跟踪和優先處理錯誤、任務或功能請求的過程。非常適合團隊使用,確保一致的格式,自動化重複步驟,並與開發管道集成。
Discourse 社區管理員
Discourse 社區管理員助手幫助您快速生成清晰、友好且結構良好的用戶回覆,使社區管理變得更輕鬆和專業。
Email 营销助手
自動尋找潛在客戶並發送為期3天的跟進郵件序列。
工單管理員
收集、分析和管理來自表單和數據庫的支持工單,幫助您高效地跟踪、優先處理和回應。

Frequently Asked Questions

一句話快速介紹:什麼是Bika.ai?
是什麽让 Bika.ai 如此独特?
"BIKA" 這個縮寫單詞代表什麼意思?
Bika.ai是怎麼做到AI自動化做事的?
Bika.ai是免費使用的嗎?
Bika.ai與ChatGPT、Gemini等AI助手有什麼區別?
Bika.ai與多維表格有什麼區別?
Bika.ai 在單表數據量、關聯引用變多後,如幾萬行、幾十萬行,會卡住嗎?
Bika.ai中的"空間站"是什麼?
付款後我擁有多少個付費空間?
什麼是"資源"?
Bika.ai 的團隊是如何「吃自己的狗糧」的?
Bika.ai如何幫助提高工作效率?
Bika.ai 的AI自動化功能有哪些特點?
Bika.ai 中的自動化模板是什麼?
Bika.ai 是否支持團隊協作及權限功能?

Embark on Your AI Automation

AWS Documentation MCP Server | Bika.ai