MCPunk

MCPunk provides tools for performing Roaming RAG

Skills

Explore the skills and capabilities of this skillset.

get_task

Get a single task. Do not use this tool unless explicitly told to do so. After you complete the task, mark it as done by calling the `set_task_done` tool.

add_tasks

Add tasks to be completed by an LLM in the future. Do not add a task unless explicitly instructed to do so. When adding tasks, provide all required context. For example: step 1 set up the ~/git/p1 and ~/git/p2 repos projects step 2 load the diff with ref develop step 3 confirm that the function added in /examples/script.py is consistent with the existing /examples/other_script.py file. The common_prefix is prefixed to each task's action (if not None), it's provided to avoid having to repeat the common context for each task. Call this tool multiple times to add many tasks.

get_a_joke

Get a really funny joke! For testing :)

chunk_details

Get full content of a specific chunk. Returns chunk content as string. Common patterns: 1. Final step after find_matching_chunks_in_file finds relevant chunks 2. Examining implementations after finding definitions/uses

diff_with_ref

Return a summary of the diff between HEAD and the given ref. You probably want the ref to be the 'base' branch like develop or main, off which PRs are made - and you can likely determine this by viewing the most recently checked out branches.

mark_task_done

Set a task as done wth a specific outcome. You can call this multiple times to update the outcome.

configure_project

Configure a new project containing files. Each file in the project is split into 'chunks' - logical sections like functions, classes, markdown sections, and import blocks. After configuring, a common workflow is: 1. list_all_files_in_project to get an overview of the project (with an initial limit on the depth of the search) 2. Find files by function/class definition: find_files_by_chunk_content(... ["def my_funk"]) 3. Find files by function/class usage: find_files_by_chunk_content(... ["my_funk"]) 4. Determine which chunks in the found files are relevant: find_matching_chunks_in_file(...) 5. Get details about the chunks: chunk_details(...) Use ~ (tilde) literally if the user specifies it in paths.

list_all_files_in_project

List all files in a project, returning a file tree. This is useful for getting an overview of the project, or specific subdirectories of the project. A project may have many files, so you are suggested to start with a depth limit to get an overview, and then continue increasing the depth limit with a filter to look at specific subdirectories.

find_files_by_chunk_content

Step 1: Find files containing chunks with matching text. Returns file tree only showing which files contain matches. You must use find_matching_chunks_in_file on each relevant file to see the actual matches. Example workflow: 1. Find files: files = find_files_by_chunk_content(project, ["MyClass"]) 2. For each file, find actual matches: matches = find_matching_chunks_in_file(file, ["MyClass"]) 3. Get content: content = chunk_details(file, match_id)

find_matching_chunks_in_file

Step 2: Find the actual matching chunks in a specific file. Required after find_files_by_chunk_content or list_all_files_in_project to see matches, as those tools only show files, not their contents. This can be used for things like: - Finding all chunks in a file that make reference to a specific function (e.g. find_matching_chunks_in_file(..., ["my_funk"]) - Finding a chunk where a specific function is defined (e.g. find_matching_chunks_in_file(..., ["def my_funk"]) Returns array of {n: name, t: type, id: identifier, chars: length}

list_most_recently_checked_out_branches

List the n most recently checked out branches in the project

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

MCPunk

Github issues 助手
Github Issues 助手是一個 AI 智能體,用於簡化 GitHub issues的管理。它可以直接在存儲庫中簡化創建、跟踪和優先處理錯誤、任務或功能請求的過程。非常適合團隊使用,確保一致的格式,自動化重複步驟,並與開發管道集成。
AI 寫作助手
告訴我有關 AI 產品或品牌的信息 - 我將撰寫吸引人的營銷文案、文章和社交媒體帖子,根據您的品牌聲音和產品細節量身定制,並附上相關鏈接和插圖。
股票新聞報告員
這個 AI 智能體實時監控和分析美國主要股票新聞,生成結構化的投資報告,提供關鍵見解、市場反應和行業級別的總結。
辦公文檔助手
一個專為公司內部營運設計的 AI 虛擬行政助理。幫助您快速創建高品質的內部文檔,如公告、會議記錄、摘要、表格、流程和人力資源記錄。
客服文檔助手
AI 助手協助客服團隊創建高質量的支援文檔,包括常見問題、工單回覆、道歉信和標準作業程序。引導您創建內部資源和面向客戶的材料。
需求文檔撰寫助手
告訴我您的產品或功能想法 - 我將幫助您創建全面且詳細的需求文檔,涵蓋用戶故事、驗收標準、技術規範等內容。
工單管理員
收集、分析和管理來自表單和數據庫的支持工單,幫助您高效地跟踪、優先處理和回應。
AI 網頁工程師
AI Programmer 是一個 AI 頁面,可以將您的原始發布說明轉換為時尚、可發布的 HTML 頁面。
Email 营销助手
自動尋找潛在客戶並發送為期3天的跟進郵件序列。

Frequently Asked Questions

一句話快速介紹:什麼是Bika.ai?
是什麽让 Bika.ai 如此独特?
"BIKA" 這個縮寫單詞代表什麼意思?
Bika.ai是怎麼做到AI自動化做事的?
Bika.ai是免費使用的嗎?
Bika.ai與ChatGPT、Gemini等AI助手有什麼區別?
Bika.ai與多維表格有什麼區別?
Bika.ai 在單表數據量、關聯引用變多後,如幾萬行、幾十萬行,會卡住嗎?
Bika.ai中的"空間站"是什麼?
付款後我擁有多少個付費空間?
什麼是"資源"?
Bika.ai 的團隊是如何「吃自己的狗糧」的?
Bika.ai如何幫助提高工作效率?
Bika.ai 的AI自動化功能有哪些特點?
Bika.ai 中的自動化模板是什麼?
Bika.ai 是否支持團隊協作及權限功能?

Embark on Your AI Automation

MCPunk | Bika.ai