AWS Documentation MCP Server

Provides tools to access AWS documentation, search for content, and get recommendations.

Skills

Explore the skills and capabilities of this skillset.

recommend

Get content recommendations for an AWS documentation page. ## Usage This tool provides recommendations for related AWS documentation pages based on a given URL. Use it to discover additional relevant content that might not appear in search results. ## Recommendation Types The recommendations include four categories: 1. **Highly Rated**: Popular pages within the same AWS service 2. **New**: Recently added pages within the same AWS service - useful for finding newly released features 3. **Similar**: Pages covering similar topics to the current page 4. **Journey**: Pages commonly viewed next by other users ## When to Use - After reading a documentation page to find related content - When exploring a new AWS service to discover important pages - To find alternative explanations of complex concepts - To discover the most popular pages for a service - To find newly released information by using a service's welcome page URL and checking the **New** recommendations ## Finding New Features To find newly released information about a service: 1. Find any page belong to that service, typically you can try the welcome page 2. Call this tool with that URL 3. Look specifically at the **New** recommendation type in the results ## Result Interpretation Each recommendation includes: - url: The documentation page URL - title: The page title - context: A brief description (if available) Args: ctx: MCP context for logging and error handling url: URL of the AWS documentation page to get recommendations for Returns: List of recommended pages with URLs, titles, and context

read_documentation

Fetch and convert an AWS documentation page to markdown format. ## Usage This tool retrieves the content of an AWS documentation page and converts it to markdown format. For long documents, you can make multiple calls with different start_index values to retrieve the entire content in chunks. ## URL Requirements - Must be from the docs.aws.amazon.com domain - Must end with .html ## Example URLs - https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html - https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html ## Output Format The output is formatted as markdown text with: - Preserved headings and structure - Code blocks for examples - Lists and tables converted to markdown format ## Handling Long Documents If the response indicates the document was truncated, you have several options: 1. **Continue Reading**: Make another call with start_index set to the end of the previous response 2. **Stop Early**: For very long documents (>30,000 characters), if you've already found the specific information needed, you can stop reading Args: ctx: MCP context for logging and error handling url: URL of the AWS documentation page to read max_length: Maximum number of characters to return start_index: On return output starting at this character index Returns: Markdown content of the AWS documentation

search_documentation

Search AWS documentation using the official AWS Documentation Search API. ## Usage This tool searches across all AWS documentation for pages matching your search phrase. Use it to find relevant documentation when you don't have a specific URL. ## Search Tips - Use specific technical terms rather than general phrases - Include service names to narrow results (e.g., "S3 bucket versioning" instead of just "versioning") - Use quotes for exact phrase matching (e.g., "AWS Lambda function URLs") - Include abbreviations and alternative terms to improve results ## Result Interpretation Each result includes: - rank_order: The relevance ranking (lower is more relevant) - url: The documentation page URL - title: The page title - context: A brief excerpt or summary (if available) Args: ctx: MCP context for logging and error handling search_phrase: Search phrase to use limit: Maximum number of results to return Returns: List of search results with URLs, titles, and context snippets

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

AWS Documentation MCP Server

辦公文檔助手
一個專為公司內部營運設計的 AI 虛擬行政助理。幫助您快速創建高品質的內部文檔,如公告、會議記錄、摘要、表格、流程和人力資源記錄。
X/Twitter 助手
一個 AI 驅動的 Twitter 助手,幫助內容創作者將 AI 產品體驗轉化為病毒式推文 - 具有自動潤色、智能研究和一鍵發布功能。
需求文檔撰寫助手
告訴我您的產品或功能想法 - 我將幫助您創建全面且詳細的需求文檔,涵蓋用戶故事、驗收標準、技術規範等內容。
AI 網頁工程師
AI Programmer 是一個 AI 頁面,可以將您的原始發布說明轉換為時尚、可發布的 HTML 頁面。
Email 营销助手
自動尋找潛在客戶並發送為期3天的跟進郵件序列。
AI 寫作助手
告訴我有關 AI 產品或品牌的信息 - 我將撰寫吸引人的營銷文案、文章和社交媒體帖子,根據您的品牌聲音和產品細節量身定制,並附上相關鏈接和插圖。
工單管理員
收集、分析和管理來自表單和數據庫的支持工單,幫助您高效地跟踪、優先處理和回應。
品牌设计师
一款專為初創數字產品設計的品牌營銷 AI 助手,幫助您快速生成適合 Product Hunt、AppSumo 等平台的在線推廣材料,涵蓋視覺創意、推廣標語、品牌語調和賣點傳達
股票新聞報告員
這個 AI 智能體實時監控和分析美國主要股票新聞,生成結構化的投資報告,提供關鍵見解、市場反應和行業級別的總結。

Frequently Asked Questions

一句話快速介紹:什麼是Bika.ai?
是什麽让 Bika.ai 如此独特?
"BIKA" 這個縮寫單詞代表什麼意思?
Bika.ai是怎麼做到AI自動化做事的?
Bika.ai是免費使用的嗎?
Bika.ai與ChatGPT、Gemini等AI助手有什麼區別?
Bika.ai與多維表格有什麼區別?
Bika.ai 在單表數據量、關聯引用變多後,如幾萬行、幾十萬行,會卡住嗎?
Bika.ai中的"空間站"是什麼?
付款後我擁有多少個付費空間?
什麼是"資源"?
Bika.ai 的團隊是如何「吃自己的狗糧」的?
Bika.ai如何幫助提高工作效率?
Bika.ai 的AI自動化功能有哪些特點?
Bika.ai 中的自動化模板是什麼?
Bika.ai 是否支持團隊協作及權限功能?

Embark on Your AI Automation