Chain of Draft MCP Server

Enables iterative reasoning through structured drafts with explicit reasoning chains, allowing for focused critiques and targeted revisions to improve problem-solving quality through systematic refinement.

Skills

Explore the skills and capabilities of this skillset.

chainOfDraft

# Chain of Draft (CoD): Systematic Reasoning Tool ⚠️ REQUIRED PARAMETERS - ALL MUST BE PROVIDED: 1. reasoning_chain: string[] - At least one reasoning step 2. next_step_needed: boolean - Whether another iteration is needed 3. draft_number: number - Current draft number (≥ 1) 4. total_drafts: number - Total planned drafts (≥ draft_number) Optional parameters only required based on context: - is_critique?: boolean - If true, critique_focus is required - critique_focus?: string - Required when is_critique=true - revision_instructions?: string - Recommended for revision steps - step_to_review?: number - Specific step index to review - is_final_draft?: boolean - Marks final iteration ## Purpose: Enhances problem-solving through structured, iterative critique and revision. Chain of Draft is an advanced reasoning tool that enhances problem-solving through structured, iterative critique and revision. Unlike traditional reasoning approaches, CoD mimics the human drafting process to improve clarity, accuracy, and robustness of conclusions. ## When to Use This Tool: - **Complex Problem-Solving:** Tasks requiring detailed, multi-step analysis with high accuracy demands - **Critical Reasoning:** Problems where logical flow and consistency are essential - **Error-Prone Scenarios:** Questions where initial reasoning might contain mistakes or oversight - **Multi-Perspective Analysis:** Cases benefiting from examining a problem from different angles - **Self-Correction Needs:** When validation and refinement of initial thoughts are crucial - **Detailed Solutions:** Tasks requiring comprehensive explanations with supporting evidence - **Mathematical or Logical Puzzles:** Problems with potential for calculation errors or logical gaps - **Nuanced Analysis:** Situations with subtle distinctions that might be missed in a single pass ## Key Capabilities: - **Iterative Improvement:** Systematically refines reasoning through multiple drafts - **Self-Critique:** Critically examines previous reasoning to identify flaws and opportunities - **Focused Revision:** Targets specific aspects of reasoning in each iteration - **Perspective Flexibility:** Can adopt different analytical viewpoints during critique - **Progressive Refinement:** Builds toward optimal solutions through controlled iterations - **Context Preservation:** Maintains understanding across multiple drafts and revisions - **Adaptable Depth:** Adjusts the number of iterations based on problem complexity - **Targeted Improvements:** Addresses specific weaknesses in each revision cycle ## Parameters Explained: - **reasoning_chain:** Array of strings representing your current reasoning steps. Each element should contain a clear, complete thought that contributes to the overall analysis. - **next_step_needed:** Boolean flag indicating whether additional critique or revision is required. Set to true until the final, refined reasoning chain is complete. - **draft_number:** Integer tracking the current iteration (starting from 1). Increments with each critique or revision. - **total_drafts:** Estimated number of drafts needed for completion. This can be adjusted as the solution evolves. - **is_critique:** Boolean indicating the current mode: * true = Evaluating previous reasoning * false = Implementing revisions - **critique_focus:** (Required when is_critique=true) Specific aspect being evaluated, such as: * "logical_consistency": Checking for contradictions or flaws in reasoning * "factual_accuracy": Verifying correctness of facts and calculations * "completeness": Ensuring all relevant aspects are considered * "clarity": Evaluating how understandable the reasoning is * "relevance": Assessing if reasoning directly addresses the problem - **revision_instructions:** (Required when is_critique=false) Detailed guidance for improving the reasoning based on the preceding critique. - **step_to_review:** (Optional) Zero-based index of the specific reasoning step being critiqued or revised. When omitted, applies to the entire chain. - **is_final_draft:** (Optional) Boolean indicating whether this is the final iteration of reasoning. ## Error Handling and Recovery: 1. **Common Error Scenarios:** - **Stalled Progress:** When multiple iterations show no improvement * Solution: Change critique_focus or reduce scope * Prevention: Use specific, actionable revision_instructions - **Circular Reasoning:** Same points repeated in different words * Solution: Use step_to_review to focus on problematic steps * Prevention: Track key points across iterations - **Scope Creep:** Reasoning chain grows but loses focus * Solution: Refocus using relevance critique * Prevention: Regular relevance checks - **Parameter Validation Failures:** * Solution: Check parameter requirements and dependencies * Prevention: Follow parameter guidelines strictly ## Performance Optimization: 1. **Token Usage Guidelines:** - Keep reasoning steps concise but complete - Focus critiques on specific aspects - Use step_to_review to limit scope - Typical effective range: 3-5 total_drafts - Consider diminishing returns after 5-7 iterations 2. **Success Criteria:** - Clear improvement in reasoning quality - Direct addressing of the problem - Logical consistency throughout - Appropriate level of detail - No remaining contradictions ## Integration Examples: 1. **Problem Analysis:** ```json { "reasoning_chain": ["Initial analysis of the problem..."], "draft_number": 1, "total_drafts": 3, "next_step_needed": true, "is_critique": false } ``` 2. **Logical Evaluation:** ```json { "reasoning_chain": ["Previous reasoning..."], "draft_number": 2, "total_drafts": 3, "next_step_needed": true, "is_critique": true, "critique_focus": "logical_consistency" } ``` 3. **Final Refinement:** ```json { "reasoning_chain": ["Refined reasoning..."], "draft_number": 3, "total_drafts": 3, "next_step_needed": false, "is_critique": false, "is_final_draft": true, "revision_instructions": "Polish and finalize" } ``` ## Best Practice Workflow: 1. **Start with Initial Draft:** Begin with your first-pass reasoning and set a reasonable total_drafts (typically 3-5). 2. **Alternate Critique and Revision:** Use is_critique=true to evaluate reasoning, then is_critique=false to implement improvements. 3. **Focus Each Critique:** Choose a specific critique_focus for each evaluation cycle rather than attempting to address everything at once. 4. **Provide Detailed Revision Guidance:** Include specific, actionable revision_instructions based on each critique. 5. **Target Specific Steps When Needed:** Use step_to_review to focus on particular reasoning steps that need improvement. 6. **Adjust Total Drafts As Needed:** Modify total_drafts based on problem complexity and progress. 7. **Mark Completion Appropriately:** Set next_step_needed=false only when the reasoning chain is complete and satisfactory. 8. **Aim for Progressive Improvement:** Each iteration should measurably improve the reasoning quality. Chain of Draft is particularly effective when complex reasoning must be broken down into clear steps, analyzed from multiple perspectives, and refined through systematic critique. By mimicking the human drafting process, it produces more robust and accurate reasoning than single-pass approaches.

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

Chain of Draft MCP Server

需求文档撰写助手
告诉我您的产品或功能想法 - 我将帮助您创建全面且详细的需求文档,涵盖用户故事、验收标准、技术规范等内容。
Discourse 社区管理员
Discourse 社区管理员助手帮助您快速生成清晰、友好且结构良好的用户回复,使社区管理变得更轻松和专业。
股票新闻报告员
这个 AI 智能体实时监控和分析美国主要股票新闻,生成结构化的投资报告,提供关键见解、市场反应和行业级别的总结。
Github issues 助手
Github Issues 助手是一个 AI 智能体,用于简化 GitHub issues的管理。它可以直接在存储库中简化创建、跟踪和优先处理错误、任务或功能请求的过程。非常适合团队使用,确保一致的格式,自动化重复步骤,并与开发管道集成。
社区活动分析员
分析社区活动截图,报告参与趋势和讨论亮点。上传社区互动的截图,该智能体会生成一份清晰的markdown报告,总结参与水平、关键讨论主题和显著亮点 — 非常适合社区经理、市场营销人员和产品团队。
X/Twitter 助手
一个 AI 驱动的 Twitter 助手,帮助内容创作者将 AI 产品体验转化为病毒式推文 - 具有自动润色、智能研究和一键发布功能。
AI 网页工程师
AI Programmer 是一个 AI 页面,可以将您的原始发布说明转换为时尚、可发布的 HTML 页面。
Google 分析师
逐步指南,教您如何将 Google Analytics 4 (GA4) 属性连接到 Google 分析师代理。涵盖创建 Google Cloud 服务账户、启用 Analytics Data API、授予 GA4 查看者访问权限,以及配置代理以支持会话、用户、跳出率、转换等指标。非常适合快速在 Bika.ai 中设置 GA4 数据报告。
品牌设计师
一款专为初创数字产品设计的品牌营销 AI 助手,帮助您快速生成适合 Product Hunt、AppSumo 等平台的在线推广材料,涵盖视觉创意、推广标语、品牌语调和卖点传达

Frequently Asked Questions

Bika.ai是免费使用的吗?
是什么让 Bika.ai 如此独特?
一句话快速介绍:什么是Bika.ai?
"BIKA" 这个缩写单词代表什么意思?
Bika.ai是怎么做到AI自动化做事的?
Bika.ai与Kimi、ChatGPT等AI助手有什么区别?
Bika.ai与多维表格有什么区别?
Bika.ai在单表数据量、关联引用变多后,如几万行、几十万行,会卡吗?
Bika.ai中的"空间站"是什么?
付款后我拥有多少个付费空间?
什么是"资源"?
Bika.ai的团队是怎样”吃自己的狗粮“(应用自己的产品)的?
Bika.ai如何帮助提高工作效率?
Bika.ai 的AI自动化功能有哪些特点?
Bika.ai 中的自动化模板是什么?
Bika.ai 是否支持团队协作及权限功能?
Bika.ai是否只适合个人使用?企业团队会不适合?

Embark on Your AI Automation

Chain of Draft MCP Server | Bika.ai