Genesys Cloud MCP Server

Provides a bridge between contact center analytics and routing data in Genesys Cloud, enabling conversational business intelligence through queue searches, conversation volume queries, call sampling, and voice quality metrics analysis.

Skills

Explore the skills and capabilities of this skillset.

search_queues

Searches for routing queues based on their name, allowing for wildcard searches. Returns a paginated list of matching queues, including their Name, ID, Description (if available), and Member Count (if available). Also provides pagination details like current page, page size, total results found, and total pages available. Useful for finding specific queue IDs, checking queue configurations, or listing available queues.

voice_call_quality

Retrieves voice call quality metrics for one or more conversations by ID. This tool specifically focuses on voice interactions and returns the minimum Mean Opinion Score (MOS) observed in each conversation, helping identify degraded or poor-quality voice calls.

conversation_topics

Retrieves Speech and Text Analytics topics detected for a specific conversation. Topics represent business-level intents (e.g. cancellation, billing enquiry) inferred from recognised phrases in the customer-agent interaction.

query_queue_volumes

Returns a breakdown of how many conversations occurred in each specified queue between two dates. Useful for comparing workload across queues.

conversation_sentiment

Retrieves sentiment analysis scores for one or more conversations. Sentiment is evaluated based on customer phrases, categorized as positive, neutral, or negative. The result includes both a numeric sentiment score (-100 to 100) and an interpreted sentiment label.

conversation_transcript

Retrieves a structured transcript of the conversation, including speaker labels, utterance timestamps, and sentiment annotations where available. The transcript is formatted as a time-aligned list of utterances attributed to each participant (e.g., customer or agent)

search_voice_conversations

Searches for voice conversations within a specified time window, optionally filtering by phone number. Returns a paginated list of conversation metadata for use in further analysis or tool calls.

sample_conversations_by_queue

Retrieves conversation analytics for a specific queue between two dates, returning a representative sample of conversation IDs. Useful for reporting, investigation, or summarisation.

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

Genesys Cloud MCP Server

办公文档助手
一个专为公司内部运营设计的 AI 虚拟行政助理。帮助您快速创建高质量的内部文档,如公告、会议记录、摘要、表格、流程和人力资源记录。
Google 分析师
逐步指南,教您如何将 Google Analytics 4 (GA4) 属性连接到 Google 分析师代理。涵盖创建 Google Cloud 服务账户、启用 Analytics Data API、授予 GA4 查看者访问权限,以及配置代理以支持会话、用户、跳出率、转换等指标。非常适合快速在 Bika.ai 中设置 GA4 数据报告。
工单管理员
收集、分析和管理来自表单和数据库的支持工单,帮助您高效地跟踪、优先处理和回应。
客服文档助手
AI 助手协助客服团队创建高质量的支持文档,包括常见问题、工单回复、道歉信和标准操作程序。引导您创建内部资源和面向客户的材料。
Email 营销助手
自动寻找潜在客户并发送为期3天的跟进邮件序列。
需求文档撰写助手
告诉我您的产品或功能想法 - 我将帮助您创建全面且详细的需求文档,涵盖用户故事、验收标准、技术规范等内容。
股票新闻报告员
这个 AI 智能体实时监控和分析美国主要股票新闻,生成结构化的投资报告,提供关键见解、市场反应和行业级别的总结。
Github issues 助手
Github Issues 助手是一个 AI 智能体,用于简化 GitHub issues的管理。它可以直接在存储库中简化创建、跟踪和优先处理错误、任务或功能请求的过程。非常适合团队使用,确保一致的格式,自动化重复步骤,并与开发管道集成。
Discourse 社区管理员
Discourse 社区管理员助手帮助您快速生成清晰、友好且结构良好的用户回复,使社区管理变得更轻松和专业。

Frequently Asked Questions

Bika.ai是免费使用的吗?
是什么让 Bika.ai 如此独特?
一句话快速介绍:什么是Bika.ai?
"BIKA" 这个缩写单词代表什么意思?
Bika.ai是怎么做到AI自动化做事的?
Bika.ai与Kimi、ChatGPT等AI助手有什么区别?
Bika.ai与多维表格有什么区别?
Bika.ai在单表数据量、关联引用变多后,如几万行、几十万行,会卡吗?
Bika.ai中的"空间站"是什么?
付款后我拥有多少个付费空间?
什么是"资源"?
Bika.ai的团队是怎样”吃自己的狗粮“(应用自己的产品)的?
Bika.ai如何帮助提高工作效率?
Bika.ai 的AI自动化功能有哪些特点?
Bika.ai 中的自动化模板是什么?
Bika.ai 是否支持团队协作及权限功能?
Bika.ai是否只适合个人使用?企业团队会不适合?

Embark on Your AI Automation

Genesys Cloud MCP Server | Bika.ai