Genesys Cloud MCP Server

Provides a bridge between contact center analytics and routing data in Genesys Cloud, enabling conversational business intelligence through queue searches, conversation volume queries, call sampling, and voice quality metrics analysis.

Skills

Explore the skills and capabilities of this skillset.

search_queues

Searches for routing queues based on their name, allowing for wildcard searches. Returns a paginated list of matching queues, including their Name, ID, Description (if available), and Member Count (if available). Also provides pagination details like current page, page size, total results found, and total pages available. Useful for finding specific queue IDs, checking queue configurations, or listing available queues.

sample_conversations_by_queue

Retrieves conversation analytics for a specific queue between two dates, returning a representative sample of conversation IDs. Useful for reporting, investigation, or summarisation.

query_queue_volumes

Returns a breakdown of how many conversations occurred in each specified queue between two dates. Useful for comparing workload across queues.

voice_call_quality

Retrieves voice call quality metrics for one or more conversations by ID. This tool specifically focuses on voice interactions and returns the minimum Mean Opinion Score (MOS) observed in each conversation, helping identify degraded or poor-quality voice calls.

conversation_sentiment

Retrieves sentiment analysis scores for one or more conversations. Sentiment is evaluated based on customer phrases, categorized as positive, neutral, or negative. The result includes both a numeric sentiment score (-100 to 100) and an interpreted sentiment label.

conversation_topics

Retrieves Speech and Text Analytics topics detected for a specific conversation. Topics represent business-level intents (e.g. cancellation, billing enquiry) inferred from recognised phrases in the customer-agent interaction.

search_voice_conversations

Searches for voice conversations within a specified time window, optionally filtering by phone number. Returns a paginated list of conversation metadata for use in further analysis or tool calls.

conversation_transcript

Retrieves a structured transcript of the conversation, including speaker labels, utterance timestamps, and sentiment annotations where available. The transcript is formatted as a time-aligned list of utterances attributed to each participant (e.g., customer or agent)

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

Genesys Cloud MCP Server

需求文檔撰寫助手
告訴我您的產品或功能想法 - 我將幫助您創建全面且詳細的需求文檔,涵蓋用戶故事、驗收標準、技術規範等內容。
社區活動分析員
分析社區活動截圖,報告參與趨勢和討論亮點。上傳社區互動的截圖,該 Agent 會生成一份清晰的markdown報告,總結參與水平、關鍵討論主題和顯著亮點 — 非常適合社區經理、行銷人員和產品團隊。
辦公文檔助手
一個專為公司內部營運設計的 AI 虛擬行政助理。幫助您快速創建高品質的內部文檔,如公告、會議記錄、摘要、表格、流程和人力資源記錄。
股票新聞報告員
這個 AI 智能體實時監控和分析美國主要股票新聞,生成結構化的投資報告,提供關鍵見解、市場反應和行業級別的總結。
X/Twitter 助手
一個 AI 驅動的 Twitter 助手,幫助內容創作者將 AI 產品體驗轉化為病毒式推文 - 具有自動潤色、智能研究和一鍵發布功能。
Google 分析師
逐步指南,教您如何將 Google Analytics 4 (GA4) 屬性連接到 Google 分析師代理。涵蓋創建 Google Cloud 服務帳戶、啟用 Analytics Data API、授予 GA4 查看者訪問權限,以及配置代理以支持會話、用戶、跳出率、轉換等指標。非常適合快速在 Bika.ai 中設置 GA4 數據報告。
Email 营销助手
自動尋找潛在客戶並發送為期3天的跟進郵件序列。
客服文檔助手
AI 助手協助客服團隊創建高質量的支援文檔,包括常見問題、工單回覆、道歉信和標準作業程序。引導您創建內部資源和面向客戶的材料。
品牌设计师
一款專為初創數字產品設計的品牌營銷 AI 助手,幫助您快速生成適合 Product Hunt、AppSumo 等平台的在線推廣材料,涵蓋視覺創意、推廣標語、品牌語調和賣點傳達

Frequently Asked Questions

一句話快速介紹:什麼是Bika.ai?
是什麽让 Bika.ai 如此独特?
"BIKA" 這個縮寫單詞代表什麼意思?
Bika.ai是怎麼做到AI自動化做事的?
Bika.ai是免費使用的嗎?
Bika.ai與ChatGPT、Gemini等AI助手有什麼區別?
Bika.ai與多維表格有什麼區別?
Bika.ai 在單表數據量、關聯引用變多後,如幾萬行、幾十萬行,會卡住嗎?
Bika.ai中的"空間站"是什麼?
付款後我擁有多少個付費空間?
什麼是"資源"?
Bika.ai 的團隊是如何「吃自己的狗糧」的?
Bika.ai如何幫助提高工作效率?
Bika.ai 的AI自動化功能有哪些特點?
Bika.ai 中的自動化模板是什麼?
Bika.ai 是否支持團隊協作及權限功能?

Embark on Your AI Automation