Mochow MCP Server Python

Provides direct access to Mochow vector database capabilities for managing databases, tables, and performing vector similarity and full-text searches with filtering options.

Skills

Explore the skills and capabilities of this skillset.

list_tables

List all tables in the current database. Returns: str: A string containing the names of all tables.

stats_table

Get the table statistics in the Mochow instance. Args: table_name (str): Name of the table to get statistics. Returns: str: A string containing the table statistics.

use_database

Switch to a different database. Args: database_name (str): Name of the database to use. Returns: str: A message indicating the success of the database switch.

vector_search

Perform vector similarity search combining vector similarity and scalar attribute filtering in the Mochow instance. Args: table_name (str): Name of the table to search. vector (list[float]): Search vector. vector_field (str): Target field containing vectors to search. Defaults to "vector". limit (int): Maximum number of results. Defaults to 10. output_fields (Optional[list[str]]): Fields to return in the results. Defaults to None. filter_expr (Optional[str]): Filter expression for scalar attributes. Defaults to None. params: Additional vector search parameters Returns: str: A string containing the vector search results.

describe_index

Describe index details in the Mochow instance. Args: table_name (str): Name of the table. index_name (str): Name of the index to describe. Returns: str: A string containing the details of the index.

describe_table

Describe table details in the Mochow instance. Args: table_name (str): Name of the table to describe. Returns: str: A string containing the details of the table.

list_databases

List all databases in the Mochow instance. Returns: str: A string containing the names of all databases.

create_database

Create a database in the Mochow instance. Args: database_name (str): Name of the database. Returns: str: A message indicating the success of database creation.

fulltext_search

Perform full text search combining BM25 similarity and scalar attribute filtering in the Mochow instance. Args: table_name (str): Name of the table to search. index_name (str): Name of the inverted index to perform full text search. search_text (str): Text to search. limit (int): Maximum number of results. Defaults to 10. output_fields (Optional[list[str]]): Fields to return in the results. Defaults to None. Returns: str: A string containing the full text search results.

delete_table_rows

Delete rows with a filter expression in the Mochow instance. Args: table_name (str): Name of the table. filter_expr (str): Filter expression to select data to delete. Returns: str: A message indicating the success of data deletion.

drop_vector_index

Drop the vector index in the Mochow instance. Args: table_name (str): Name of the table. index_name (str): Name of the vector index to drop. Returns: str: A message indicating the success of index drop.

select_table_rows

Select rows with a filter expression in the Mochow instance. Args: table_name (str): Name of the table. filter_expr (str): Filter expression to select data. Defaults to None. limit (int): Maximum number of results. Defaults to 10. output_fields (Optional[list[str]]): Fields to return in the results. Defaults to None. Returns: str: A string containing the selected rows.

create_vector_index

Create a vector index on a vector type field in the Mochow instance. Args: table_name (str): Name of the table. index_name (str): Name of the index. field_name (str): Name of the vector field. index_type (str): Type of vector index. Supported values are "HNSW", "HNSWPQ", "HNSWSQ". metric_type (str): Distance metric. Supported values are "L2", "COSINE", "IP". params (Optional[dict[str, Any]]): Additional vector index parameters. Returns: str: A message indicating the success of index creation.

rebuild_vector_index

Rebuild the vector index in the Mochow instance. Args: table_name (str): Name of the table. index_name (str): Name of the vector index to rebuild. Returns: str: A message indicating the success of index rebuild initiation.

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

Mochow MCP Server Python

Github issues 助手
Github Issues 助手是一个 AI 智能体,用于简化 GitHub issues的管理。它可以直接在存储库中简化创建、跟踪和优先处理错误、任务或功能请求的过程。非常适合团队使用,确保一致的格式,自动化重复步骤,并与开发管道集成。
办公文档助手
一个专为公司内部运营设计的 AI 虚拟行政助理。帮助您快速创建高质量的内部文档,如公告、会议记录、摘要、表格、流程和人力资源记录。
Email 营销助手
自动寻找潜在客户并发送为期3天的跟进邮件序列。
AI 网页工程师
AI Programmer 是一个 AI 页面,可以将您的原始发布说明转换为时尚、可发布的 HTML 页面。
股票新闻报告员
这个 AI 智能体实时监控和分析美国主要股票新闻,生成结构化的投资报告,提供关键见解、市场反应和行业级别的总结。
品牌设计师
一款专为初创数字产品设计的品牌营销 AI 助手,帮助您快速生成适合 Product Hunt、AppSumo 等平台的在线推广材料,涵盖视觉创意、推广标语、品牌语调和卖点传达
需求文档撰写助手
告诉我您的产品或功能想法 - 我将帮助您创建全面且详细的需求文档,涵盖用户故事、验收标准、技术规范等内容。
Discourse 社区管理员
Discourse 社区管理员助手帮助您快速生成清晰、友好且结构良好的用户回复,使社区管理变得更轻松和专业。
社区活动分析员
分析社区活动截图,报告参与趋势和讨论亮点。上传社区互动的截图,该智能体会生成一份清晰的markdown报告,总结参与水平、关键讨论主题和显著亮点 — 非常适合社区经理、市场营销人员和产品团队。

Frequently Asked Questions

Bika.ai是免费使用的吗?
是什么让 Bika.ai 如此独特?
一句话快速介绍:什么是Bika.ai?
"BIKA" 这个缩写单词代表什么意思?
Bika.ai是怎么做到AI自动化做事的?
Bika.ai与Kimi、ChatGPT等AI助手有什么区别?
Bika.ai与多维表格有什么区别?
Bika.ai在单表数据量、关联引用变多后,如几万行、几十万行,会卡吗?
Bika.ai中的"空间站"是什么?
付款后我拥有多少个付费空间?
什么是"资源"?
Bika.ai的团队是怎样”吃自己的狗粮“(应用自己的产品)的?
Bika.ai如何帮助提高工作效率?
Bika.ai 的AI自动化功能有哪些特点?
Bika.ai 中的自动化模板是什么?
Bika.ai 是否支持团队协作及权限功能?
Bika.ai是否只适合个人使用?企业团队会不适合?

Embark on Your AI Automation

Mochow MCP Server Python | Bika.ai