AWS Documentation MCP Server

Provides tools to access AWS documentation, search for content, and get recommendations.

Skills

Explore the skills and capabilities of this skillset.

recommend

Get content recommendations for an AWS documentation page. ## Usage This tool provides recommendations for related AWS documentation pages based on a given URL. Use it to discover additional relevant content that might not appear in search results. ## Recommendation Types The recommendations include four categories: 1. **Highly Rated**: Popular pages within the same AWS service 2. **New**: Recently added pages within the same AWS service - useful for finding newly released features 3. **Similar**: Pages covering similar topics to the current page 4. **Journey**: Pages commonly viewed next by other users ## When to Use - After reading a documentation page to find related content - When exploring a new AWS service to discover important pages - To find alternative explanations of complex concepts - To discover the most popular pages for a service - To find newly released information by using a service's welcome page URL and checking the **New** recommendations ## Finding New Features To find newly released information about a service: 1. Find any page belong to that service, typically you can try the welcome page 2. Call this tool with that URL 3. Look specifically at the **New** recommendation type in the results ## Result Interpretation Each recommendation includes: - url: The documentation page URL - title: The page title - context: A brief description (if available) Args: ctx: MCP context for logging and error handling url: URL of the AWS documentation page to get recommendations for Returns: List of recommended pages with URLs, titles, and context

read_documentation

Fetch and convert an AWS documentation page to markdown format. ## Usage This tool retrieves the content of an AWS documentation page and converts it to markdown format. For long documents, you can make multiple calls with different start_index values to retrieve the entire content in chunks. ## URL Requirements - Must be from the docs.aws.amazon.com domain - Must end with .html ## Example URLs - https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html - https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html ## Output Format The output is formatted as markdown text with: - Preserved headings and structure - Code blocks for examples - Lists and tables converted to markdown format ## Handling Long Documents If the response indicates the document was truncated, you have several options: 1. **Continue Reading**: Make another call with start_index set to the end of the previous response 2. **Stop Early**: For very long documents (>30,000 characters), if you've already found the specific information needed, you can stop reading Args: ctx: MCP context for logging and error handling url: URL of the AWS documentation page to read max_length: Maximum number of characters to return start_index: On return output starting at this character index Returns: Markdown content of the AWS documentation

search_documentation

Search AWS documentation using the official AWS Documentation Search API. ## Usage This tool searches across all AWS documentation for pages matching your search phrase. Use it to find relevant documentation when you don't have a specific URL. ## Search Tips - Use specific technical terms rather than general phrases - Include service names to narrow results (e.g., "S3 bucket versioning" instead of just "versioning") - Use quotes for exact phrase matching (e.g., "AWS Lambda function URLs") - Include abbreviations and alternative terms to improve results ## Result Interpretation Each result includes: - rank_order: The relevance ranking (lower is more relevant) - url: The documentation page URL - title: The page title - context: A brief excerpt or summary (if available) Args: ctx: MCP context for logging and error handling search_phrase: Search phrase to use limit: Maximum number of results to return Returns: List of search results with URLs, titles, and context snippets

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

AWS Documentation MCP Server

Google アナリスト
Google Analytics 4 (GA4) プロパティを Google アナリスト゚ヌゞェントに接続するためのステップバむステップガむド。Google Cloud サヌビスアカりントの䜜成、Analytics Data API の有効化、GA4 ビュヌアヌアクセスの付䞎、セッション、ナヌザヌ、バりンス率、コンバヌゞョンなどのサポヌトされおいるメトリックで゚ヌゞェントを構成する方法を説明したす。Bika.ai での GA4 デヌタレポヌトの迅速なセットアップに最適です。
チケットマネヌゞャヌ
フォヌムやデヌタベヌスからのサポヌトチケットを収集、分析、管理し、効率的に远跡、優先順䜍付け、応答を支揎したす。
AI プログラマヌ
AI Programmer は、あなたの生のリリヌスノヌトを最新の、公開可胜な HTML ペヌゞに倉換する AI ペヌゞです。
GitHub Issues アシスタント
GitHub Issues アシスタントは、GitHubのIssue管理を効率化するAI゚ヌゞェントです。リポゞトリ内でのバグ報告、タスク管理、機胜リク゚ストの䜜成・远跡・優先順䜍付けをシンプルにしたす。チヌムでの利甚に最適で、䞀貫したフォヌマットを維持し、定型䜜業を自動化するこずで、開発プロセスをスムヌズにしたす
株匏ニュヌスレポヌタヌ
このAI゚ヌゞェントは、䞻芁な米囜株匏ニュヌスをリアルタむムで監芖・分析し、䞻芁な掞察、垂堎の反応、セクタヌ別の芁玄を含む構造化された投資レポヌトを生成したす。
Discourse コミュニティマネヌゞャヌ
Discourse コミュニティマネヌゞャヌ゚ヌゞェントは、ナヌザヌポストに察しお明確で芪しみやすく、構造化された返信を迅速に生成するのを支揎し、コミュニティのモデレヌションをより簡単か぀プロフェッショナルにしたす。
芁件文曞ラむタヌ
補品や機胜のアむデアに぀いお教えおください。ナヌザヌストヌリヌ、受け入れ基準、技術仕様などを含む包括的で詳现な芁件文曞の䜜成をお手䌝いしたす。
ブランドデザむナヌ
スタヌトアップのデゞタル補品向けに特別に蚭蚈されたブランドマヌケティングAIアシスタントで、Product HuntやAppSumoなどのプラットフォヌムに適したオンラむンプロモヌション玠材を迅速に生成し、ビゞュアルクリ゚むティブ、プロモヌションスロヌガン、ブランドトヌン、セヌルスポむントのコミュニケヌションをカバヌしたす
メヌルマヌケティングアシスタント
リヌドを芋぀け、3日間のフォロヌアップメヌルシヌケンスを自動的に送信したす。

Frequently Asked Questions

䞀蚀で説明Bika.aiずは䜕ですか
Bika.aiは䜕がそんなにナニヌクなのですか
"BIKA" ずいう略語は䜕を意味したすか
Bika.aiはどのようにしおAI自動化を実珟しおいたすか
Bika.aiは無料で䜿甚できたすか
Bika.aiずChatGPT、GeminiなどのAIアシスタントずの違いは䜕ですか
Bika.aiず倚次元スプレッドシヌトの違いは䜕ですか
Bika.aiでは、単䞀のテヌブルのデヌタ量が数䞇行、数十䞇行に達し、関連参照が増えた堎合、動䜜が遅くなりたすか?
Bika.aiの「スペヌスステヌション」ずは䜕ですか
支払い埌、いく぀の有料スペヌスを持っおいたすか
「リ゜ヌス」ずは䜕ですか
Bika.aiのチヌムはどのように「自瀟の補品を自ら䜿っおいる」のですか?
Bika.aiはどのようにしお䜜業効率を向䞊させたすか
Bika.aiのAI自動化機胜にはどのような特城がありたすか
Bika.aiの自動化テンプレヌトずは䜕ですか
Bika.aiはチヌム協力ず暩限機胜をサポヌトしおいたすか

Embark on Your AI Automation