Phoenix MCP

Provides a unified interface to Arize Phoenix's capabilities for managing prompts, exploring datasets, and running experiments across different LLM providers

Skills

Explore the skills and capabilities of this skillset.

get-spans

Get spans from a project with filtering criteria. Spans represent individual operations or units of work within a trace. They contain timing information, attributes, and context about the operation being performed. Example usage: Get recent spans from project "my-project" Get spans in a time range from project "my-project" Expected return: Object containing spans array and optional next cursor for pagination. Example: { "spans": [ { "id": "span123", "name": "http_request", "context": { "trace_id": "trace456", "span_id": "span123" }, "start_time": "2024-01-01T12:00:00Z", "end_time": "2024-01-01T12:00:01Z", "attributes": { "http.method": "GET", "http.url": "/api/users" } } ], "nextCursor": "cursor_for_pagination" }

list-prompts

Get a list of all the prompts. Prompts (templates, prompt templates) are versioned templates for input messages to an LLM. Each prompt includes both the input messages, but also the model and invocation parameters to use when generating outputs. Returns a list of prompt objects with their IDs, names, and descriptions. Example usage: List all available prompts Expected return: Array of prompt objects with metadata. Example: [{ "name": "article-summarizer", "description": "Summarizes an article into concise bullet points", "source_prompt_id": null, "id": "promptid1234" }]

list-datasets

Get a list of all datasets. Datasets are collections of 'dataset examples' that each example includes an input, (expected) output, and optional metadata. They are primarily used as inputs for experiments. Example usage: Show me all available datasets Expected return: Array of dataset objects with metadata. Example: [ { "id": "RGF0YXNldDox", "name": "my-dataset", "description": "A dataset for testing", "metadata": {}, "created_at": "2024-03-20T12:00:00Z", "updated_at": "2024-03-20T12:00:00Z" } ]

list-projects

Get a list of all projects. Projects are containers for organizing traces, spans, and other observability data. Each project has a unique name and can contain traces from different applications or experiments. Example usage: Show me all available projects Expected return: Array of project objects with metadata. Example: [ { "id": "UHJvamVjdDox", "name": "default", "description": "Default project for traces" }, { "id": "UHJvamVjdDoy", "name": "my-experiment", "description": "Project for my ML experiment" } ]

upsert-prompt

Create or update a prompt with its template and configuration. Creates a new prompt and its initial version with specified model settings. Example usage: Create a new prompt named 'email_generator' with a template for generating emails Expected return: A confirmation message of successful prompt creation

phoenix-support

Get help with Phoenix and OpenInference. - Tracing AI applications via OpenInference and OpenTelemetry - Phoenix datasets, experiments, and prompt management - Phoenix evals and annotations Use this tool when you need assistance with Phoenix features, troubleshooting, or best practices. Expected return: Expert guidance about how to use and integrate Phoenix

get-latest-prompt

Get the latest version of a prompt. Returns the prompt version with its template, model configuration, and invocation parameters. Example usage: Get the latest version of a prompt named 'article-summarizer' Expected return: Prompt version object with template and configuration. Example: { "description": "Initial version", "model_provider": "OPENAI", "model_name": "gpt-3.5-turbo", "template": { "type": "chat", "messages": [ { "role": "system", "content": "You are an expert summarizer. Create clear, concise bullet points highlighting the key information." }, { "role": "user", "content": "Please summarize the following {{topic}} article: {{article}}" } ] }, "template_type": "CHAT", "template_format": "MUSTACHE", "invocation_parameters": { "type": "openai", "openai": {} }, "id": "promptversionid1234" }

get-prompt-version

Get a specific version of a prompt using its version ID. Returns the prompt version with its template, model configuration, and invocation parameters. Example usage: Get a specific prompt version with ID 'promptversionid1234' Expected return: Prompt version object with template and configuration. Example: { "description": "Initial version", "model_provider": "OPENAI", "model_name": "gpt-3.5-turbo", "template": { "type": "chat", "messages": [ { "role": "system", "content": "You are an expert summarizer. Create clear, concise bullet points highlighting the key information." }, { "role": "user", "content": "Please summarize the following {{topic}} article: {{article}}" } ] }, "template_type": "CHAT", "template_format": "MUSTACHE", "invocation_parameters": { "type": "openai", "openai": {} }, "id": "promptversionid1234" }

add-dataset-examples

Add examples to an existing dataset. This tool adds one or more examples to an existing dataset. Each example includes an input, output, and metadata. The metadata will automatically include information indicating that these examples were synthetically generated via MCP. When calling this tool, check existing examples using the "get-dataset-examples" tool to ensure that you are not adding duplicate examples and following existing patterns for how data should be structured. Example usage: Look at the analyze "my-dataset" and augment them with new examples to cover relevant edge cases Expected return: Confirmation of successful addition of examples to the dataset. Example: { "dataset_name": "my-dataset", "message": "Successfully added examples to dataset" }

get-dataset-examples

Get examples from a dataset. Dataset examples are an array of objects that each include an input, (expected) output, and optional metadata. These examples are typically used to represent input to an application or model (e.g. prompt template variables, a code file, or image) and used to test or benchmark changes. Example usage: Show me all examples from dataset RGF0YXNldDox Expected return: Object containing dataset ID, version ID, and array of examples. Example: { "dataset_id": "datasetid1234", "version_id": "datasetversionid1234", "examples": [ { "id": "exampleid1234", "input": { "text": "Sample input text" }, "output": { "text": "Expected output text" }, "metadata": {}, "updated_at": "YYYY-MM-DDTHH:mm:ssZ" } ] }

get-experiment-by-id

Get an experiment by its ID. The tool returns experiment metadata in the first content block and a JSON object with the experiment data in the second. The experiment data contains both the results of each experiment run and the annotations made by an evaluator to score or label the results, for example, comparing the output of an experiment run to the expected output from the dataset example. Example usage: Show me the experiment results for experiment RXhwZXJpbWVudDo4 Expected return: Object containing experiment metadata and results. Example: { "metadata": { "id": "experimentid1234", "dataset_id": "datasetid1234", "dataset_version_id": "datasetversionid1234", "repetitions": 1, "metadata": {}, "project_name": "Experiment-abc123", "created_at": "YYYY-MM-DDTHH:mm:ssZ", "updated_at": "YYYY-MM-DDTHH:mm:ssZ" }, "experimentResult": [ { "example_id": "exampleid1234", "repetition_number": 0, "input": "Sample input text", "reference_output": "Expected output text", "output": "Actual output text", "error": null, "latency_ms": 1000, "start_time": "2025-03-20T12:00:00Z", "end_time": "2025-03-20T12:00:01Z", "trace_id": "trace-123", "prompt_token_count": 10, "completion_token_count": 20, "annotations": [ { "name": "quality", "annotator_kind": "HUMAN", "label": "good", "score": 0.9, "explanation": "Output matches expected format", "trace_id": "trace-456", "error": null, "metadata": {}, "start_time": "YYYY-MM-DDTHH:mm:ssZ", "end_time": "YYYY-MM-DDTHH:mm:ssZ" } ] } ] }

get-span-annotations

Get span annotations for a list of span IDs. Span annotations provide additional metadata, scores, or labels for spans. They can be created by humans, LLMs, or code and help in analyzing and categorizing spans. Example usage: Get annotations for spans ["span1", "span2"] from project "my-project" Get quality score annotations for span "span1" from project "my-project" Expected return: Object containing annotations array and optional next cursor for pagination. Example: { "annotations": [ { "id": "annotation123", "span_id": "span1", "name": "quality_score", "result": { "label": "good", "score": 0.95, "explanation": null }, "annotator_kind": "LLM", "metadata": { "model": "gpt-4" } } ], "nextCursor": "cursor_for_pagination" }

list-prompt-versions

Get a list of all versions for a specific prompt. Returns versions with pagination support. Example usage: List all versions of a prompt named 'article-summarizer' Expected return: Array of prompt version objects with IDs and configuration. Example: [ { "description": "Initial version", "model_provider": "OPENAI", "model_name": "gpt-3.5-turbo", "template": { "type": "chat", "messages": [ { "role": "system", "content": "You are an expert summarizer. Create clear, concise bullet points highlighting the key information." }, { "role": "user", "content": "Please summarize the following {{topic}} article: {{article}}" } ] }, "template_type": "CHAT", "template_format": "MUSTACHE", "invocation_parameters": { "type": "openai", "openai": {} }, "id": "promptversionid1234" } ]

add-prompt-version-tag

Add a tag to a specific prompt version. The operation returns no content on success (204 status code). Example usage: Tag prompt version 'promptversionid1234' with the name 'production' Expected return: Confirmation message of successful tag addition

get-dataset-experiments

List experiments run on a dataset. Example usage: Show me all experiments run on dataset RGF0YXNldDox Expected return: Array of experiment objects with metadata. Example: [ { "id": "experimentid1234", "dataset_id": "datasetid1234", "dataset_version_id": "datasetversionid1234", "repetitions": 1, "metadata": {}, "project_name": "Experiment-abc123", "created_at": "YYYY-MM-DDTHH:mm:ssZ", "updated_at": "YYYY-MM-DDTHH:mm:ssZ" } ]

get-prompt-by-identifier

Get a prompt's latest version by its identifier (name or ID). Returns the prompt version with its template, model configuration, and invocation parameters. Example usage: Get the latest version of a prompt with name 'article-summarizer' Expected return: Prompt version object with template and configuration. Example: { "description": "Initial version", "model_provider": "OPENAI", "model_name": "gpt-3.5-turbo", "template": { "type": "chat", "messages": [ { "role": "system", "content": "You are an expert summarizer. Create clear, concise bullet points highlighting the key information." }, { "role": "user", "content": "Please summarize the following {{topic}} article: {{article}}" } ] }, "template_type": "CHAT", "template_format": "MUSTACHE", "invocation_parameters": { "type": "openai", "openai": {} }, "id": "promptversionid1234" }

list-prompt-version-tags

Get a list of all tags for a specific prompt version. Returns tag objects with pagination support. Example usage: List all tags associated with prompt version 'promptversionid1234' Expected return: Array of tag objects with names and IDs. Example: [ { "name": "staging", "description": "The version deployed to staging", "id": "promptversionid1234" }, { "name": "development", "description": "The version deployed for development", "id": "promptversionid1234" } ]

get-prompt-version-by-tag

Get a prompt version by its tag name. Returns the prompt version with its template, model configuration, and invocation parameters. Example usage: Get the 'production' tagged version of prompt 'article-summarizer' Expected return: Prompt version object with template and configuration. Example: { "description": "Initial version", "model_provider": "OPENAI", "model_name": "gpt-3.5-turbo", "template": { "type": "chat", "messages": [ { "role": "system", "content": "You are an expert summarizer. Create clear, concise bullet points highlighting the key information." }, { "role": "user", "content": "Please summarize the following {{topic}} article: {{article}}" } ] }, "template_type": "CHAT", "template_format": "MUSTACHE", "invocation_parameters": { "type": "openai", "openai": {} }, "id": "promptversionid1234" }

list-experiments-for-dataset

Get a list of all the experiments run on a given dataset. Experiments are collections of experiment runs, each experiment run corresponds to a single dataset example. The dataset example is passed to an implied `task` which in turn produces an output. Example usage: Show me all the experiments I've run on dataset RGF0YXNldDox Expected return: Array of experiment objects with metadata. Example: [ { "id": "experimentid1234", "dataset_id": "datasetid1234", "dataset_version_id": "datasetversionid1234", "repetitions": 1, "metadata": {}, "project_name": "Experiment-abc123", "created_at": "YYYY-MM-DDTHH:mm:ssZ", "updated_at": "YYYY-MM-DDTHH:mm:ssZ" } ]

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

Phoenix MCP

株式ニュースレポーター
このAIエージェントは、主要な米国株式ニュースをリアルタイムで監視・分析し、主要な洞察、市場の反応、セクター別の要約を含む構造化された投資レポートを生成します。
カスタマーサポート文書作成者
カスタマーサポートチームが高品質なサポートドキュメント(FAQ、チケット返信、謝罪状、SOP)を作成するのを支援するAIアシスタント。内部リソースと顧客向け資料の両方の作成をガイドします。
オフィス文書ヘルパー
社内業務向けに設計されたAI仮想事務アシスタント。お知らせ、会議録、要約、フォーム、手順書、人事記録など、高品質な社内文書の迅速な作成をサポートします。
要件文書ライター
製品や機能のアイデアについて教えてください。ユーザーストーリー、受け入れ基準、技術仕様などを含む包括的で詳細な要件文書の作成をお手伝いします。
Google アナリスト
Google Analytics 4 (GA4) プロパティを Google アナリストエージェントに接続するためのステップバイステップガイド。Google Cloud サービスアカウントの作成、Analytics Data API の有効化、GA4 ビューアーアクセスの付与、セッション、ユーザー、バウンス率、コンバージョンなどのサポートされているメトリックでエージェントを構成する方法を説明します。Bika.ai での GA4 データレポートの迅速なセットアップに最適です。
メールマーケティングアシスタント
リードを見つけ、3日間のフォローアップメールシーケンスを自動的に送信します。
GitHub Issues アシスタント
GitHub Issues アシスタントは、GitHubのIssue管理を効率化するAIエージェントです。リポジトリ内でのバグ報告、タスク管理、機能リクエストの作成・追跡・優先順位付けをシンプルにします。チームでの利用に最適で、一貫したフォーマットを維持し、定型作業を自動化することで、開発プロセスをスムーズにします
AIライター
AI製品やブランドについて教えてください。ブランドの声と製品の詳細に合わせて、魅力的なマーケティングコピー、記事、ソーシャルメディア投稿を作成し、関連するリンクとイラストを添付します。
ブランドデザイナー
スタートアップのデジタル製品向けに特別に設計されたブランドマーケティングAIアシスタントで、Product HuntやAppSumoなどのプラットフォームに適したオンラインプロモーション素材を迅速に生成し、ビジュアルクリエイティブ、プロモーションスローガン、ブランドトーン、セールスポイントのコミュニケーションをカバーします

Frequently Asked Questions

一言で説明:Bika.aiとは何ですか?
Bika.aiは何がそんなにユニークなのですか?
"BIKA" という略語は何を意味しますか?
Bika.aiはどのようにしてAI自動化を実現していますか?
Bika.aiは無料で使用できますか?
Bika.aiとChatGPT、GeminiなどのAIアシスタントとの違いは何ですか?
Bika.aiと多次元スプレッドシートの違いは何ですか?
Bika.aiでは、単一のテーブルのデータ量が数万行、数十万行に達し、関連参照が増えた場合、動作が遅くなりますか?
Bika.aiの「スペースステーション」とは何ですか?
支払い後、いくつの有料スペースを持っていますか?
「リソース」とは何ですか?
Bika.aiのチームはどのように「自社の製品を自ら使っている」のですか?
Bika.aiはどのようにして作業効率を向上させますか?
Bika.aiのAI自動化機能にはどのような特徴がありますか?
Bika.aiの自動化テンプレートとは何ですか?
Bika.aiはチーム協力と権限機能をサポートしていますか?

Embark on Your AI Automation