MCPunk

MCPunk provides tools for performing Roaming RAG

Skills

Explore the skills and capabilities of this skillset.

get_task

Get a single task. Do not use this tool unless explicitly told to do so. After you complete the task, mark it as done by calling the `set_task_done` tool.

add_tasks

Add tasks to be completed by an LLM in the future. Do not add a task unless explicitly instructed to do so. When adding tasks, provide all required context. For example: step 1 set up the ~/git/p1 and ~/git/p2 repos projects step 2 load the diff with ref develop step 3 confirm that the function added in /examples/script.py is consistent with the existing /examples/other_script.py file. The common_prefix is prefixed to each task's action (if not None), it's provided to avoid having to repeat the common context for each task. Call this tool multiple times to add many tasks.

get_a_joke

Get a really funny joke! For testing :)

chunk_details

Get full content of a specific chunk. Returns chunk content as string. Common patterns: 1. Final step after find_matching_chunks_in_file finds relevant chunks 2. Examining implementations after finding definitions/uses

diff_with_ref

Return a summary of the diff between HEAD and the given ref. You probably want the ref to be the 'base' branch like develop or main, off which PRs are made - and you can likely determine this by viewing the most recently checked out branches.

mark_task_done

Set a task as done wth a specific outcome. You can call this multiple times to update the outcome.

configure_project

Configure a new project containing files. Each file in the project is split into 'chunks' - logical sections like functions, classes, markdown sections, and import blocks. After configuring, a common workflow is: 1. list_all_files_in_project to get an overview of the project (with an initial limit on the depth of the search) 2. Find files by function/class definition: find_files_by_chunk_content(... ["def my_funk"]) 3. Find files by function/class usage: find_files_by_chunk_content(... ["my_funk"]) 4. Determine which chunks in the found files are relevant: find_matching_chunks_in_file(...) 5. Get details about the chunks: chunk_details(...) Use ~ (tilde) literally if the user specifies it in paths.

list_all_files_in_project

List all files in a project, returning a file tree. This is useful for getting an overview of the project, or specific subdirectories of the project. A project may have many files, so you are suggested to start with a depth limit to get an overview, and then continue increasing the depth limit with a filter to look at specific subdirectories.

find_files_by_chunk_content

Step 1: Find files containing chunks with matching text. Returns file tree only showing which files contain matches. You must use find_matching_chunks_in_file on each relevant file to see the actual matches. Example workflow: 1. Find files: files = find_files_by_chunk_content(project, ["MyClass"]) 2. For each file, find actual matches: matches = find_matching_chunks_in_file(file, ["MyClass"]) 3. Get content: content = chunk_details(file, match_id)

find_matching_chunks_in_file

Step 2: Find the actual matching chunks in a specific file. Required after find_files_by_chunk_content or list_all_files_in_project to see matches, as those tools only show files, not their contents. This can be used for things like: - Finding all chunks in a file that make reference to a specific function (e.g. find_matching_chunks_in_file(..., ["my_funk"]) - Finding a chunk where a specific function is defined (e.g. find_matching_chunks_in_file(..., ["def my_funk"]) Returns array of {n: name, t: type, id: identifier, chars: length}

list_most_recently_checked_out_branches

List the n most recently checked out branches in the project

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

MCPunk

Discourse Community Manager
Discourse Community Manager Agent helps you quickly generate clear, friendly, and well-structured replies to user posts, making community moderation easier and more professional.
Brand Designer
A brand marketing AI assistant specially designed for start-up digital products, helping you quickly generate online promotional materials suitable for Product Hunt, AppSumo and other platforms, covering visual creativity, promotional slogans, brand tone and selling point communication
Ticket Manager
Collects, analyzes, and manages support tickets from forms and databases, helping you track, prioritize, and respond efficiently.
AI Programmer
AI Programmer is an AI agent that transforms your raw release notes into stylish, ready-to-publish HTML pages.
Github Issues Creator
The Github Issues Creator is an AI agent for streamlined GitHub issue management. It simplifies creating, tracking, and prioritizing bugs, tasks, or feature requests directly within repositories. Ideal for teams, it ensures consistent formatting, automates repetitive steps, and integrates with development pipelines.
AI Writer
Tell me about the AI product or brand — I’ll draft engaging marketing copy, articles, and social media posts tailored to your brand voice and product details, complete with relevant links and illustrations.
Email Marketer
Finds leads and sends a 3-day follow-up email sequence automatically.
Requirements Document Writer
Tell me about your product or feature idea — I'll help you create comprehensive and detailed requirements documents that cover user stories, acceptance criteria, technical specifications, and more.
Office Docs Helper
An AI-powered virtual administrative assistant for internal company operations. Helps you quickly create high-quality internal documents like announcements, meeting minutes, summaries, forms, procedures, and HR records.

Frequently Asked Questions

Quick one-sentence introduction: What is Bika.ai?
What make Bika.ai so unique?
The English abbreviation "BIKA" stands for what meaning?
How does Bika.ai automate tasks with AI?
Is Bika.ai free to use?
What is the difference between Bika.ai and AI assistants like ChatGPT, Gemini?
What is the difference between Bika.ai and spreadsheet database?
Does Bika.ai get poor performance when the single database records reaches tens of thousands or hundreds of thousands of rows and the associations become more complex?
What is the 'Space' in Bika.ai?
How many paid spaces do I own after making a payment?
What does 'Resources' mean?
How does the Bika.ai team 'eat your own dog food' (use their own product)?
How does Bika.ai help improve work efficiency?
What are the features of Bika.ai's AI automation?
What are the automation templates in Bika.ai?
Does Bika.ai support team collaboration and permissions features?

Embark on Your AI Automation