AWS Documentation MCP Server

Provides tools to access AWS documentation, search for content, and get recommendations.

Skills

Explore the skills and capabilities of this skillset.

recommend

Get content recommendations for an AWS documentation page. ## Usage This tool provides recommendations for related AWS documentation pages based on a given URL. Use it to discover additional relevant content that might not appear in search results. ## Recommendation Types The recommendations include four categories: 1. **Highly Rated**: Popular pages within the same AWS service 2. **New**: Recently added pages within the same AWS service - useful for finding newly released features 3. **Similar**: Pages covering similar topics to the current page 4. **Journey**: Pages commonly viewed next by other users ## When to Use - After reading a documentation page to find related content - When exploring a new AWS service to discover important pages - To find alternative explanations of complex concepts - To discover the most popular pages for a service - To find newly released information by using a service's welcome page URL and checking the **New** recommendations ## Finding New Features To find newly released information about a service: 1. Find any page belong to that service, typically you can try the welcome page 2. Call this tool with that URL 3. Look specifically at the **New** recommendation type in the results ## Result Interpretation Each recommendation includes: - url: The documentation page URL - title: The page title - context: A brief description (if available) Args: ctx: MCP context for logging and error handling url: URL of the AWS documentation page to get recommendations for Returns: List of recommended pages with URLs, titles, and context

read_documentation

Fetch and convert an AWS documentation page to markdown format. ## Usage This tool retrieves the content of an AWS documentation page and converts it to markdown format. For long documents, you can make multiple calls with different start_index values to retrieve the entire content in chunks. ## URL Requirements - Must be from the docs.aws.amazon.com domain - Must end with .html ## Example URLs - https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html - https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html ## Output Format The output is formatted as markdown text with: - Preserved headings and structure - Code blocks for examples - Lists and tables converted to markdown format ## Handling Long Documents If the response indicates the document was truncated, you have several options: 1. **Continue Reading**: Make another call with start_index set to the end of the previous response 2. **Stop Early**: For very long documents (>30,000 characters), if you've already found the specific information needed, you can stop reading Args: ctx: MCP context for logging and error handling url: URL of the AWS documentation page to read max_length: Maximum number of characters to return start_index: On return output starting at this character index Returns: Markdown content of the AWS documentation

search_documentation

Search AWS documentation using the official AWS Documentation Search API. ## Usage This tool searches across all AWS documentation for pages matching your search phrase. Use it to find relevant documentation when you don't have a specific URL. ## Search Tips - Use specific technical terms rather than general phrases - Include service names to narrow results (e.g., "S3 bucket versioning" instead of just "versioning") - Use quotes for exact phrase matching (e.g., "AWS Lambda function URLs") - Include abbreviations and alternative terms to improve results ## Result Interpretation Each result includes: - rank_order: The relevance ranking (lower is more relevant) - url: The documentation page URL - title: The page title - context: A brief excerpt or summary (if available) Args: ctx: MCP context for logging and error handling search_phrase: Search phrase to use limit: Maximum number of results to return Returns: List of search results with URLs, titles, and context snippets

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

AWS Documentation MCP Server

Github issues 助手
Github Issues 助手是一个 AI 智能体,用于简化 GitHub issues的管理。它可以直接在存储库中简化创建、跟踪和优先处理错误、任务或功能请求的过程。非常适合团队使用,确保一致的格式,自动化重复步骤,并与开发管道集成。
Email 营销助手
自动寻找潜在客户并发送为期3天的跟进邮件序列。
社区活动分析员
分析社区活动截图,报告参与趋势和讨论亮点。上传社区互动的截图,该智能体会生成一份清晰的markdown报告,总结参与水平、关键讨论主题和显著亮点 — 非常适合社区经理、市场营销人员和产品团队。
Discourse 社区管理员
Discourse 社区管理员助手帮助您快速生成清晰、友好且结构良好的用户回复,使社区管理变得更轻松和专业。
AI 写作助手
告诉我有关 AI 产品或品牌的信息 - 我将撰写吸引人的营销文案、文章和社交媒体帖子,根据您的品牌声音和产品细节量身定制,并附上相关链接和插图。
AI 网页工程师
AI Programmer 是一个 AI 页面,可以将您的原始发布说明转换为时尚、可发布的 HTML 页面。
股票新闻报告员
这个 AI 智能体实时监控和分析美国主要股票新闻,生成结构化的投资报告,提供关键见解、市场反应和行业级别的总结。
X/Twitter 助手
一个 AI 驱动的 Twitter 助手,帮助内容创作者将 AI 产品体验转化为病毒式推文 - 具有自动润色、智能研究和一键发布功能。
办公文档助手
一个专为公司内部运营设计的 AI 虚拟行政助理。帮助您快速创建高质量的内部文档,如公告、会议记录、摘要、表格、流程和人力资源记录。

Frequently Asked Questions

Bika.ai是免费使用的吗?
是什么让 Bika.ai 如此独特?
一句话快速介绍:什么是Bika.ai?
"BIKA" 这个缩写单词代表什么意思?
Bika.ai是怎么做到AI自动化做事的?
Bika.ai与Kimi、ChatGPT等AI助手有什么区别?
Bika.ai与多维表格有什么区别?
Bika.ai在单表数据量、关联引用变多后,如几万行、几十万行,会卡吗?
Bika.ai中的"空间站"是什么?
付款后我拥有多少个付费空间?
什么是"资源"?
Bika.ai的团队是怎样”吃自己的狗粮“(应用自己的产品)的?
Bika.ai如何帮助提高工作效率?
Bika.ai 的AI自动化功能有哪些特点?
Bika.ai 中的自动化模板是什么?
Bika.ai 是否支持团队协作及权限功能?
Bika.ai是否只适合个人使用?企业团队会不适合?

Embark on Your AI Automation

AWS Documentation MCP Server | Bika.ai