Phoenix MCP

Provides a unified interface to Arize Phoenix's capabilities for managing prompts, exploring datasets, and running experiments across different LLM providers

Skills

Explore the skills and capabilities of this skillset.

get-spans

Get spans from a project with filtering criteria. Spans represent individual operations or units of work within a trace. They contain timing information, attributes, and context about the operation being performed. Example usage: Get recent spans from project "my-project" Get spans in a time range from project "my-project" Expected return: Object containing spans array and optional next cursor for pagination. Example: { "spans": [ { "id": "span123", "name": "http_request", "context": { "trace_id": "trace456", "span_id": "span123" }, "start_time": "2024-01-01T12:00:00Z", "end_time": "2024-01-01T12:00:01Z", "attributes": { "http.method": "GET", "http.url": "/api/users" } } ], "nextCursor": "cursor_for_pagination" }

list-prompts

Get a list of all the prompts. Prompts (templates, prompt templates) are versioned templates for input messages to an LLM. Each prompt includes both the input messages, but also the model and invocation parameters to use when generating outputs. Returns a list of prompt objects with their IDs, names, and descriptions. Example usage: List all available prompts Expected return: Array of prompt objects with metadata. Example: [{ "name": "article-summarizer", "description": "Summarizes an article into concise bullet points", "source_prompt_id": null, "id": "promptid1234" }]

list-datasets

Get a list of all datasets. Datasets are collections of 'dataset examples' that each example includes an input, (expected) output, and optional metadata. They are primarily used as inputs for experiments. Example usage: Show me all available datasets Expected return: Array of dataset objects with metadata. Example: [ { "id": "RGF0YXNldDox", "name": "my-dataset", "description": "A dataset for testing", "metadata": {}, "created_at": "2024-03-20T12:00:00Z", "updated_at": "2024-03-20T12:00:00Z" } ]

list-projects

Get a list of all projects. Projects are containers for organizing traces, spans, and other observability data. Each project has a unique name and can contain traces from different applications or experiments. Example usage: Show me all available projects Expected return: Array of project objects with metadata. Example: [ { "id": "UHJvamVjdDox", "name": "default", "description": "Default project for traces" }, { "id": "UHJvamVjdDoy", "name": "my-experiment", "description": "Project for my ML experiment" } ]

upsert-prompt

Create or update a prompt with its template and configuration. Creates a new prompt and its initial version with specified model settings. Example usage: Create a new prompt named 'email_generator' with a template for generating emails Expected return: A confirmation message of successful prompt creation

phoenix-support

Get help with Phoenix and OpenInference. - Tracing AI applications via OpenInference and OpenTelemetry - Phoenix datasets, experiments, and prompt management - Phoenix evals and annotations Use this tool when you need assistance with Phoenix features, troubleshooting, or best practices. Expected return: Expert guidance about how to use and integrate Phoenix

get-latest-prompt

Get the latest version of a prompt. Returns the prompt version with its template, model configuration, and invocation parameters. Example usage: Get the latest version of a prompt named 'article-summarizer' Expected return: Prompt version object with template and configuration. Example: { "description": "Initial version", "model_provider": "OPENAI", "model_name": "gpt-3.5-turbo", "template": { "type": "chat", "messages": [ { "role": "system", "content": "You are an expert summarizer. Create clear, concise bullet points highlighting the key information." }, { "role": "user", "content": "Please summarize the following {{topic}} article: {{article}}" } ] }, "template_type": "CHAT", "template_format": "MUSTACHE", "invocation_parameters": { "type": "openai", "openai": {} }, "id": "promptversionid1234" }

get-prompt-version

Get a specific version of a prompt using its version ID. Returns the prompt version with its template, model configuration, and invocation parameters. Example usage: Get a specific prompt version with ID 'promptversionid1234' Expected return: Prompt version object with template and configuration. Example: { "description": "Initial version", "model_provider": "OPENAI", "model_name": "gpt-3.5-turbo", "template": { "type": "chat", "messages": [ { "role": "system", "content": "You are an expert summarizer. Create clear, concise bullet points highlighting the key information." }, { "role": "user", "content": "Please summarize the following {{topic}} article: {{article}}" } ] }, "template_type": "CHAT", "template_format": "MUSTACHE", "invocation_parameters": { "type": "openai", "openai": {} }, "id": "promptversionid1234" }

add-dataset-examples

Add examples to an existing dataset. This tool adds one or more examples to an existing dataset. Each example includes an input, output, and metadata. The metadata will automatically include information indicating that these examples were synthetically generated via MCP. When calling this tool, check existing examples using the "get-dataset-examples" tool to ensure that you are not adding duplicate examples and following existing patterns for how data should be structured. Example usage: Look at the analyze "my-dataset" and augment them with new examples to cover relevant edge cases Expected return: Confirmation of successful addition of examples to the dataset. Example: { "dataset_name": "my-dataset", "message": "Successfully added examples to dataset" }

get-dataset-examples

Get examples from a dataset. Dataset examples are an array of objects that each include an input, (expected) output, and optional metadata. These examples are typically used to represent input to an application or model (e.g. prompt template variables, a code file, or image) and used to test or benchmark changes. Example usage: Show me all examples from dataset RGF0YXNldDox Expected return: Object containing dataset ID, version ID, and array of examples. Example: { "dataset_id": "datasetid1234", "version_id": "datasetversionid1234", "examples": [ { "id": "exampleid1234", "input": { "text": "Sample input text" }, "output": { "text": "Expected output text" }, "metadata": {}, "updated_at": "YYYY-MM-DDTHH:mm:ssZ" } ] }

get-experiment-by-id

Get an experiment by its ID. The tool returns experiment metadata in the first content block and a JSON object with the experiment data in the second. The experiment data contains both the results of each experiment run and the annotations made by an evaluator to score or label the results, for example, comparing the output of an experiment run to the expected output from the dataset example. Example usage: Show me the experiment results for experiment RXhwZXJpbWVudDo4 Expected return: Object containing experiment metadata and results. Example: { "metadata": { "id": "experimentid1234", "dataset_id": "datasetid1234", "dataset_version_id": "datasetversionid1234", "repetitions": 1, "metadata": {}, "project_name": "Experiment-abc123", "created_at": "YYYY-MM-DDTHH:mm:ssZ", "updated_at": "YYYY-MM-DDTHH:mm:ssZ" }, "experimentResult": [ { "example_id": "exampleid1234", "repetition_number": 0, "input": "Sample input text", "reference_output": "Expected output text", "output": "Actual output text", "error": null, "latency_ms": 1000, "start_time": "2025-03-20T12:00:00Z", "end_time": "2025-03-20T12:00:01Z", "trace_id": "trace-123", "prompt_token_count": 10, "completion_token_count": 20, "annotations": [ { "name": "quality", "annotator_kind": "HUMAN", "label": "good", "score": 0.9, "explanation": "Output matches expected format", "trace_id": "trace-456", "error": null, "metadata": {}, "start_time": "YYYY-MM-DDTHH:mm:ssZ", "end_time": "YYYY-MM-DDTHH:mm:ssZ" } ] } ] }

get-span-annotations

Get span annotations for a list of span IDs. Span annotations provide additional metadata, scores, or labels for spans. They can be created by humans, LLMs, or code and help in analyzing and categorizing spans. Example usage: Get annotations for spans ["span1", "span2"] from project "my-project" Get quality score annotations for span "span1" from project "my-project" Expected return: Object containing annotations array and optional next cursor for pagination. Example: { "annotations": [ { "id": "annotation123", "span_id": "span1", "name": "quality_score", "result": { "label": "good", "score": 0.95, "explanation": null }, "annotator_kind": "LLM", "metadata": { "model": "gpt-4" } } ], "nextCursor": "cursor_for_pagination" }

list-prompt-versions

Get a list of all versions for a specific prompt. Returns versions with pagination support. Example usage: List all versions of a prompt named 'article-summarizer' Expected return: Array of prompt version objects with IDs and configuration. Example: [ { "description": "Initial version", "model_provider": "OPENAI", "model_name": "gpt-3.5-turbo", "template": { "type": "chat", "messages": [ { "role": "system", "content": "You are an expert summarizer. Create clear, concise bullet points highlighting the key information." }, { "role": "user", "content": "Please summarize the following {{topic}} article: {{article}}" } ] }, "template_type": "CHAT", "template_format": "MUSTACHE", "invocation_parameters": { "type": "openai", "openai": {} }, "id": "promptversionid1234" } ]

add-prompt-version-tag

Add a tag to a specific prompt version. The operation returns no content on success (204 status code). Example usage: Tag prompt version 'promptversionid1234' with the name 'production' Expected return: Confirmation message of successful tag addition

get-dataset-experiments

List experiments run on a dataset. Example usage: Show me all experiments run on dataset RGF0YXNldDox Expected return: Array of experiment objects with metadata. Example: [ { "id": "experimentid1234", "dataset_id": "datasetid1234", "dataset_version_id": "datasetversionid1234", "repetitions": 1, "metadata": {}, "project_name": "Experiment-abc123", "created_at": "YYYY-MM-DDTHH:mm:ssZ", "updated_at": "YYYY-MM-DDTHH:mm:ssZ" } ]

get-prompt-by-identifier

Get a prompt's latest version by its identifier (name or ID). Returns the prompt version with its template, model configuration, and invocation parameters. Example usage: Get the latest version of a prompt with name 'article-summarizer' Expected return: Prompt version object with template and configuration. Example: { "description": "Initial version", "model_provider": "OPENAI", "model_name": "gpt-3.5-turbo", "template": { "type": "chat", "messages": [ { "role": "system", "content": "You are an expert summarizer. Create clear, concise bullet points highlighting the key information." }, { "role": "user", "content": "Please summarize the following {{topic}} article: {{article}}" } ] }, "template_type": "CHAT", "template_format": "MUSTACHE", "invocation_parameters": { "type": "openai", "openai": {} }, "id": "promptversionid1234" }

list-prompt-version-tags

Get a list of all tags for a specific prompt version. Returns tag objects with pagination support. Example usage: List all tags associated with prompt version 'promptversionid1234' Expected return: Array of tag objects with names and IDs. Example: [ { "name": "staging", "description": "The version deployed to staging", "id": "promptversionid1234" }, { "name": "development", "description": "The version deployed for development", "id": "promptversionid1234" } ]

get-prompt-version-by-tag

Get a prompt version by its tag name. Returns the prompt version with its template, model configuration, and invocation parameters. Example usage: Get the 'production' tagged version of prompt 'article-summarizer' Expected return: Prompt version object with template and configuration. Example: { "description": "Initial version", "model_provider": "OPENAI", "model_name": "gpt-3.5-turbo", "template": { "type": "chat", "messages": [ { "role": "system", "content": "You are an expert summarizer. Create clear, concise bullet points highlighting the key information." }, { "role": "user", "content": "Please summarize the following {{topic}} article: {{article}}" } ] }, "template_type": "CHAT", "template_format": "MUSTACHE", "invocation_parameters": { "type": "openai", "openai": {} }, "id": "promptversionid1234" }

list-experiments-for-dataset

Get a list of all the experiments run on a given dataset. Experiments are collections of experiment runs, each experiment run corresponds to a single dataset example. The dataset example is passed to an implied `task` which in turn produces an output. Example usage: Show me all the experiments I've run on dataset RGF0YXNldDox Expected return: Array of experiment objects with metadata. Example: [ { "id": "experimentid1234", "dataset_id": "datasetid1234", "dataset_version_id": "datasetversionid1234", "repetitions": 1, "metadata": {}, "project_name": "Experiment-abc123", "created_at": "YYYY-MM-DDTHH:mm:ssZ", "updated_at": "YYYY-MM-DDTHH:mm:ssZ" } ]

Configuration

Customize the skillset to fit your needs.
MCP Server

Connect to MCP Server

Phoenix MCP

AI 网页工程师
AI Programmer 是一个 AI 页面,可以将您的原始发布说明转换为时尚、可发布的 HTML 页面。
社区活动分析员
分析社区活动截图,报告参与趋势和讨论亮点。上传社区互动的截图,该智能体会生成一份清晰的markdown报告,总结参与水平、关键讨论主题和显著亮点 — 非常适合社区经理、市场营销人员和产品团队。
Github issues 助手
Github Issues 助手是一个 AI 智能体,用于简化 GitHub issues的管理。它可以直接在存储库中简化创建、跟踪和优先处理错误、任务或功能请求的过程。非常适合团队使用,确保一致的格式,自动化重复步骤,并与开发管道集成。
股票新闻报告员
这个 AI 智能体实时监控和分析美国主要股票新闻,生成结构化的投资报告,提供关键见解、市场反应和行业级别的总结。
品牌设计师
一款专为初创数字产品设计的品牌营销 AI 助手,帮助您快速生成适合 Product Hunt、AppSumo 等平台的在线推广材料,涵盖视觉创意、推广标语、品牌语调和卖点传达
需求文档撰写助手
告诉我您的产品或功能想法 - 我将帮助您创建全面且详细的需求文档,涵盖用户故事、验收标准、技术规范等内容。
AI 写作助手
告诉我有关 AI 产品或品牌的信息 - 我将撰写吸引人的营销文案、文章和社交媒体帖子,根据您的品牌声音和产品细节量身定制,并附上相关链接和插图。
客服文档助手
AI 助手协助客服团队创建高质量的支持文档,包括常见问题、工单回复、道歉信和标准操作程序。引导您创建内部资源和面向客户的材料。
工单管理员
收集、分析和管理来自表单和数据库的支持工单,帮助您高效地跟踪、优先处理和回应。

Frequently Asked Questions

Bika.ai是免费使用的吗?
是什么让 Bika.ai 如此独特?
一句话快速介绍:什么是Bika.ai?
"BIKA" 这个缩写单词代表什么意思?
Bika.ai是怎么做到AI自动化做事的?
Bika.ai与Kimi、ChatGPT等AI助手有什么区别?
Bika.ai与多维表格有什么区别?
Bika.ai在单表数据量、关联引用变多后,如几万行、几十万行,会卡吗?
Bika.ai中的"空间站"是什么?
付款后我拥有多少个付费空间?
什么是"资源"?
Bika.ai的团队是怎样”吃自己的狗粮“(应用自己的产品)的?
Bika.ai如何帮助提高工作效率?
Bika.ai 的AI自动化功能有哪些特点?
Bika.ai 中的自动化模板是什么?
Bika.ai 是否支持团队协作及权限功能?
Bika.ai是否只适合个人使用?企业团队会不适合?

Embark on Your AI Automation